过抛物线y^2=4ax(a>0)的焦点F作相互垂直的两条铉AB和CD,求|AB|+|CD|的最小值

来源:百度知道 编辑:UC知道 时间:2024/06/15 10:34:09
详细过程啊!谢谢诶!!!!

我们可以知道AB、CD的斜率都存在,否则其中一条必与抛物线只有一个交点
且焦点坐标(a,0),准线x=-a
所以设AB:y=k*(x-a)
则(因为垂直,所以斜率互为负倒数)CD:y=-1/k*(x-a)
与抛物线方程联立得:关于AB:k^2*x^2-(2*a*k^2+4a)*x+a^2*k^2=0
关于CD:x^2-(4*a*k^2+2a)*x+a^2=0
由韦达定理有:xA+xB=(2*a*k^2+4a)/k^2,xC+xD=4*a*k^2+2a,
因为AF、BF、CF、DF过焦点,所以由抛物线定义有:AF=xA+a,BF=xB+a,CF=xC+a,DF=xD+a
所以|AB|+|CD|=xA+a+xB+a+xC+a+xD+a=8a+4ak^2+4a/k^2
根据基本不等式:最小值即为16a(当且仅当k=(2*根号a)时取等号)